
Operating Systems 2016/17
Assignment 7

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, December 12th, 2017 – 23:59

A new assignment will be published every week, right after the last one was due. It
must be completed before its submission deadline.

The assignments must be filled out online in ILIAS. Handwritten solutions are no
longer accepted. You will find the online version for each assignment in your tutorial’s
directory. P-Questions are programming assignments. Download the provided tem-
plate from ILIAS. Do not fiddle with the compiler flags. Submission instructions can
be found on the first assignment.

In this assignment you will get familiar with synchronization.

T-Question 7.1: Synchronization

a. What are the three requirements for a valid solution of the critical-section problem?
Give a short explanation for each. 2 T-pt

b. Can spinlocks be implemented entirely in user-mode? Explain your answer. 1 T-pt

c. Using a CPU register for a spinlock’s lock variable would be much faster than the
implementation with a variable in memory. Why would such a spinlock not work? 1 T-pt

d. What is the idea behind Linux’s futexes? 1 T-pt

e. The CRITICAL SECTION synchronization object in Windows works similarly to fu-
texes in Linux. However, the documentation states that on single-processor sys-
tems, the spinlock is ignored. Why did the Microsoft developers choose this design? 1 T-pt
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682530%28v=vs.85%29.aspx

1

T-Question 7.2: Ring Buffer

Consider the following solution to synchronize the access to a shared ring buffer
with multiple producers and a single consumer thread.

1 #define BUFFER SIZE 10
2 int ringbuffer [BUFFER SIZE] ; // Buffer with 10 elements
3 int i ndex f i l l = 0; // Index to next f i l l e d buffer element
4 int index empty = 0; // Index to next empty buffer element
5
6 sem t f i l l , empty ; // Semaphores to synchronize access
7
8 void i n i t i a l i z e () {
9 // I n i t i a l i z e semaphores to a l l elements free

10 sem init (& f i l l , 0 , 0) ; // I n i t i a l i z e to 0
11 sem init (&empty , 0 , BUFFER SIZE) ; // I n i t i a l i z e to buffer size
12 }

13 void∗ producer thread main (void∗ arg) {
14 while (1) {
15 int item = produce () ;
16
17 // Wait for empty s lot and
18 // ” reserve ” i t atomically
19 sem wait(&empty) ;
20
21 ringbuffer [index empty] = item ;
22 index empty = (index empty + 1)
23 % BUFFER SIZE;
24
25 // Signal consumer thread
26 // that an item is ready
27 sem post(& f i l l) ;
28 }
29 }

30 void∗ consumer thread main (void∗ arg) {
31 while (1) {
32 // Wait for an item in the buffer
33 // and claim i t
34 sem wait(& f i l l) ;
35
36 int item = ringbuffer [i ndex f i l l] ;
37 index f i l l = (i ndex f i l l + 1)
38 % BUFFER SIZE;
39
40 // Signal producer threads that
41 // an buffer s lot is empty again
42 sem post(&empty) ;
43
44 consume(item) ;
45 }
46 }

a. Give an execution sequence that causes an error. 2 T-pt

b. What general code changes are necessary to prevent the error? You do not need
to provide the actual code, but give line numbers to specify where changes are
necessary. 2 T-pt

2

P-Question 7.1: Barrier
Download the template p1 for this assignment from ILIAS. You may only modify
and upload the file barrier.c.

A barrier synchronization allows multiple threads to wait until all threads have re-
ached a particular point of execution before any thread continues. Such a synchro-
nization mechanism is useful in phased computations, in which threads executing
the same code in parallel must all complete one phase before moving on to the next
one.

Barrier

T4

T3

T2

T1

Barrier

T4T3T2

T1

Barrier T4T3T2T1

Abbildung 1: Barrier Synchronization

In this question you will write your own barrier synchronization object.

a. Define necessary fields in the ThreadBarrier structure for a barrier, which uses a
pthread condition variable to synchronize threads and which waits for a specified
number of threads to enter the barrier. The number of threads should be stored in
the barrier object. 2 P-pt

b. Implement the barrier allocation and free functions. 2 P-pt

createBarrier() The function should allocate and initialize a new ThreadBarrier

structure on the heap and return it to the caller. The number of threads that
the barrier should synchronize is supplied via the threads parameter. The
method should return NULL on any failure and fail if the threads parameter
does not contain a meaningful value for a barrier synchronization object!

deleteBarrier() The function should release a ThreadBarrier object, previously
allocated with createBarrier().

ThreadBarrier *createBarrier(int threads);
void deleteBarrier(ThreadBarrier *barrier);

c. Implement the enterBarrier() function that performs the actual barrier synchro-
nization. Your implementation should satisfy the following requirements: 2 P-pt

• Uses the conditional variable in the supplied ThreadBarrier to synchronize
access to the barrier structure’s fields and put threads to sleep.

• Wakes up all threads if the configured number of threads have tried to enter.

• Resets the barrier to be ready for re-use when appropriate.

void enterBarrier(ThreadBarrier *barrier);

3

P-Question 7.2: Ticket Spinlock
Download the template p2 for this assignment from ILIAS. You may only modify
and upload the file tslock.c.

Multiple threads are waiting on a spinlock. When using a regular spinlock, the
thread that enters the spinlock is selected in-deterministically, based on the ope-
rating system’s scheduling. The thread that is currently running and trying to
acquire the lock gets it (as soon as it is released). This policy can lead to some
threads waiting longer on the spinlock than others. For example, it may be the last
thread that tried to enter the lock that gets it, although it waited for the shortest
time.

A ticket-based spinlock brings fairness by assigning each thread that tries to enter
the spinlock a ticket and granting access in ticket order. Consequently, no thread
can cut in line.

In this question you will write your own ticket spinlock that uses simple integer
values as tickets.

a. The template already defines the TicketSpinlock structure for the ticket spinlock.
Look at the comments and implement the tslock init() function by setting ap-
propriate start values for a given ticket spinlock. 1 P-pt

void tslock_init(TicketSpinlock *tslock);

b. Implement the tslock lock()/tslock unlock() function pair that performs the ac-
tual lock acquisition, spinning and lock release. The functions should fulfill the
following requirements: 3 P-pt

• Assign a ticket to a thread trying to acquire a lock by atomically reading and
incrementing the ticketCounter field. Use GCC inline assembler to express
the atomic operation with the lock xaddl <register>, <memory> instruction.
The xaddl instruction adds the value supplied in the register to the 32-bit
integer variable at the given memory location and writes the previous value of
the variable in the register. The lock prefix instructs the CPU to perform the
operation atomically, that is, synchronized with other CPUs in the system. Do
not use GCC intrinsic functions for atomic operations!

• Let the current thread spin until its ticket is set in the currentTicket field.

• Use sched yield() to quickly release the processor during spinning.

• Increment currentTicket when appropriate to move to the next ticket.

Hints: Take a look at the solution of Question 3.2 (Assignment 3) on how to gene-
rally use GCC inline assembler. Note that you will have to modify the parameters
for the inline assembler block to reflect the storage locations (register/memory) of
variables, define output variables and give the compiler hints to what state (e.g.,
memory) your assembler code changes. The solution for this question will require
only the single atomic instruction, no other assembler instructions are needed.

void tslock_lock(TicketSpinlock *tslock);
void tslock_unlock(TicketSpinlock *tslock);

Total:
10T-pt
10P-pt

4

